Program Chair

Allan Tucker

Brunel University London, UK

Program Chair

Pedro Henriques Abreu

University of Coimbra, Portugal

 

https://scholar.googleusercontent.com/citations?view_op=view_photo&user=nfIVXcMAAAAJ&citpid=3

 

Program Co-Chair

Jaime Cardoso

INESC TEC and University of Porto, Portugal

Doctoral Consortium Chair

David Riaño

Universitat Rovira i Virgili, Spain

 

 

Local Organisation

Pedro Pereira Rodrigues

University of Porto, Portugal

Publicity Chair

José Pereira Amorim

University of Coimbra, Portugal



 

 Senior Program Committee (Provisional)

Ameen Abu-Hanna, University of Amsterdam, Netherlands
Riccardo Bellazzi, University of Pavia, Italy
Carlo Combi, University of Verona, Italy
Arianna Dagliati, University of Manchester, Manchester, UK
Michel Dojat, INSERM, France
Adelo Grando, Arizona State University, USA

Milos Hauskrecht,  University of Pittsburgh, USA
John Holmes, University of Pennsylvania, USA
Jose Juarez, University of Murcia, Spain
Elpida Keravnou-Papailiou, University of Cyprus
Xiaohui Liu,    Brunel University London, UK
Martin Michalowski, University of Minnesota, USA
Mar Marcos, Universitat Jaume I, Castellón, Spain
Stefania Montani, University of Piemonte Orientale
Robert Moskovitch,  Ben Gurion University, Israel
Barbara Oliboni, University of Verona, Italy
Enea Parimbelli,    University of Pavia
Nada Lavrač, Jozef Stefan Institute, Slovenia
Peter Lucas, Leiden University, Netherlands
Niels Peek, University of Manchester, UK
Silvana Quaglini, University of Pavia, Italy
Lucia Sacchi, University of Pavia, Italy
Yuval Shahar, Ben Gurion University, Israel
Stephen Swift,    Brunel University London, UK
Annette ten Teije, Vrije Universiteit Amsterdam
Szymon Wilk, Poznan University of Technology, Poland
Blaz Zupan, University of Ljubljana, Slovenia

Program Committee

Syed Sibte Raza Abidi,    Dalhousie University
Amparo Alonso-Betanzos,    University of A Coruña
Mahir Arzoky,    Brunel University London
José Amorim,    University of Coimbra
Pedro Barahona,    Universidade NOVA de Lisboa
Isabelle     Bichindaritz,    State University of New York at Oswego
Henrik Boström,    KTH Royal Institute of Technology
Alessio    Bottrighi,    Dipartimento di Informatica, Università del Piemonte Orientale
Ricardo Cardoso,    University of Coimbra
Kerstin    Denecke,    Bern University of Applied Sciences
Barbara Di Camillo,    University of Padova
Georg Dorffner,    Medical University Vienna
Inês Dutra,    University of Porto
Jan Egger,    Graz University of Technology
Henrik Eriksson,    Linköping University
Ben Evans,    Brunel University London
Jesualdo Tomás  Fernández-Breis,    Departamento de Informatica y Sistemas. Universidad de Murcia
Pedro Furtado,    Univ. Coimbra / CISUC
Josep Gomez,    U Hosp Joan XXIII, Pere Virgili Inst., Tarragona, Spain
Zhe He,    Florida State University
Jaakko Hollmen, University of Stockholm
Arjen Hommersom,    Open University of the Netherlands
Zhengxing Huang,    Zhejiang University
Nevo Itzhak,    Ben Gurion University, Israel
Charles    Kahn,    University of Pennsylvania
Eleni Kaldoudi,    Lab of Medical Physics, Medical School, Democritus University of Thrace
Aida Kamisalic,    University of Maribor, Slovenia
Haridimos Kondylakis,    Institute of Computer Science, FORTH
Pedro Larranaga,    University of Madrid
Giorgio Leonardi,    DISIT, Universita' del Piemonte orientale
Michael Liebman,    IPQ Analytics. LLC
Beatriz López,    University of Girona
Simone Marini, University of Florida
Carolyn McGregor,    Ontario Tech University
Alan McMillan,    University of Wisconsin-Madison
Paola Mello,    University of Bologna
Alina Miron,    Brunel University
Diego Molla,    Macquarie University
Sara Montagna,     ALMA MATER STUDIORUM - Università di Bologna
Irina Moreira,    Center for Neuroscience and Cell Biology
Laura Moss,    University of Aberdeen
Fleur Mougin,    ERIAS, INSERM U1219 - Université de Bordeaux
Henning Müller,    HES-SO
Loris Nanni,    University of Padua
Goran Nenadic,    The University of Manchester
Øystein     Nytrø,    Norwegian University of Science and Technology
Dympna O'Sullivan,    Technological University Dublin
Panagiotis Papapetrou, University of Stockholm
Luca Piovesan,    DISIT, Università del Piemonte Orientale    
Christian Popow,    Medical University of Vienna, Austria
Cédric Pruski,    Luxembourg Institute of Science and Technology
Andrew Reader,    King's College London
Stephen Rees,    Aalborg University
Aleksander Sadikov,    University of Ljubljana
Erfan Sajjadi,    Brunel University London
Clarisa Sanchez Gutierrez,    Diagnostic Image Analysis Group, Department Radiology, RaboudUMC
Miriam Santos,    University of Coimbra
Isabel Sassoon,    Brunel University
Brigitte Seroussi ,    Assistance Publique - Hôpitaux de Paris
Erez Shalom,    Medical Informatics Research Center, Department of Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel
Yuan Shang, University of Arizona
Darmoni Stefan    ,    CISMeF, Resarch Department, Rouen University Hospital, France & TIBS, LITIS EA 4108, Institute of Biomedical Research, University of Rouen
Gregor Stiglic,    Faculty of Health Sciences, University of Maribor
Manuel Striani,    University of Piemonte Orientale
João Manuel R. S. Tavares,    FEUP & INEGI
Paolo Terenziani,    DISIT, Universita' del Piemonte orientale
Francesca Toni,    Imperial College London
Samson     Tu,    Stanford University
Ryan Urbanowicz,    University of Pennsylvania
Frank Van Harmelen,    Vrije Universiteit Amsterdam
Alfredo     Vellido    ,    Universitat Politècnica de Catalunya, Spain
Francesca Vitali, University of Arizona
Dongwen Wang    ,    Arizona State University
Leila Yousefi,    Brunel University London
Pierre Zweigenbaum,    Université Paris-Saclay, CNRS, LIMSI